Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes.

نویسندگان

  • L E Kellett
  • D M Poole
  • L M Ferreira
  • A J Durrant
  • G P Hazlewood
  • H J Gilbert
چکیده

The complete nucleotide sequence of the Pseudomonas fluorescens subsp. cellulosa xynB gene, encoding an endo-beta-1,4-xylanase (xylanase B; XYLB) has been determined. The structural gene consists of an open reading frame (ORF) of 1775 bp coding for a protein of Mr 61,000. A second ORF (xynC) of 1712 bp, which starts 148 bp downstream of xynB, encodes a protein, designated xylanase C (XYLC), of Mr 59,000. XYLB hydrolyses oat spelt xylan to xylobiose and xylose, whereas XYLC releases only arabinose from the same substrate. Thus XYLB is a typical xylanase and XYLC is an arabinofuranosidase. Both enzymes bind to crystalline cellulose (Avicel), but not to xylan. The nucleotide sequences between residues 114 and 931 of xynB and xynC were identical, as were amino acid residues 39-311 of XYLB and XYLC. This conserved sequence is reiterated elsewhere in the P. fluorescens subsp. cellulosa genome. Truncated derivatives of XYLB and XYLC, in which the conserved sequence had been deleted, retained catalytic activity, but did not exhibit cellulose binding. A hybrid gene in which the 5' end of xynC, encoding residues 1-110 of XYLC, was fused to the Escherichia coli pho A' gene (encodes mature alkaline phosphatase) directed the synthesis of a fusion protein which exhibited alkaline phosphatase activity and bound to cellulose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of hybrid proteins consisting of the catalytic domains of Clostridium and Ruminococcus endoglucanases, fused to Pseudomonas non-catalytic cellulose-binding domains.

The N-terminal 160 or 267 residues of xylanase A from Pseudomonas fluorescens subsp. cellulosa, containing a non-catalytic cellulose-binding domain (CBD), were fused to the N-terminus of the catalytic domain of endoglucanase E (EGE') from Clostridium thermocellum. A further hybrid enzyme was constructed consisting of the 347 N-terminal residues of xylanase C (XYLC) from P. fluorescens subsp. ce...

متن کامل

A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain.

The 5' regions of genes xynB and xynC, coding for a xylanase and arabinofuranosidase respectively, are identical and are reiterated four times within the Pseudomonas fluorescens subsp. cellulosa genome. To isolate further copies of the reiterated xynB/C 5' region, a genomic library of Ps. fluorescens subsp. cellulosa DNA was screened with a probe constructed from the conserved region of xynB. D...

متن کامل

The non-catalytic cellulose-binding domain of a novel cellulase from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel.

A genomic library of Pseudomonas fluorescens subsp. cellulosa DNA, constructed in lambda ZAPII, was screened for carboxymethyl-cellulase activity. The pseudomonad insert from a recombinant phage which displayed elevated cellulase activity in comparison with other cellulase-positive clones present in the library, was excised into pBluescript SK- to generate the plasmid pC48. The nucleotide seque...

متن کامل

Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates.

Xylanase A (XYLA) and arabinofuranosidase C (XYLC) from Pseudomonas fluorescens subsp. cellulosa are modular enzymes consisting of discrete cellulose-binding domains (CBDs) and catalytic domains joined by serine-rich linker sequences. To evaluate the role of the CBDs and interdomain regions, the capacity of full-length and truncated derivatives of the two enzymes, lacking either the linker sequ...

متن کامل

Arabinanase A from Pseudomonas fluorescens subsp. cellulosa exhibits both an endo- and an exo- mode of action.

Pseudomonas fluorescens subsp. cellulosa expressed arabinanase activity when grown on media supplemented with arabinan or arabinose. Arabinanase activity was not induced by the inclusion of other plant structural polysaccharides, and was repressed by the addition of glucose. The majority of the Pseudomonas arabinanase activity was extracellular. Screening of a genomic library of P. fluorescens ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 272 2  شماره 

صفحات  -

تاریخ انتشار 1990